
D e p t o f C S E , M B I T S Page 1

FILE SYSTEM

 A file is a named collection of related information that

is recorded on secondary storage.

 From a user's perspective, a file is the smallest allotment of

logical secondary storage

 Data cannot be written to secondary storage unless they are

within a file.

 The file system consists of two distinct parts: a collection

of files, each storing related data, and a directory

structure, which organizes and provides information about

all the files in the system

 OS abstracts from the physical properties of its storage

devices to define a logical storage unit, the file.

 Files are mapped by OS onto physical devices. These

storage devices are usually nonvolatile

 Commonly, files represent programs and data. Data files

may be numeric, alphabetic, alphanumeric, or binary.

 File is a sequence of bits, bytes, lines, or records, the

meaning of which is defined by the file's creator and

user.

 Many different types of information may be stored in a

file-source programs, object programs, executable

programs, numeric data, text, payroll records, graphic

images, sound recordings, and so on.

 A text file is a sequence of characters organized into lines.

D e p t o f C S E , M B I T S Page 2

 A source file is a sequence of subroutines and functions,

each of which is further organized as declarations followed

by executable statements.

 An object file is a sequence of bytes organized into blocks

understandable by the system's linker.

 An executable file is a series of code sections that the

loader can bring into memory and execute.

FILE ATTRIBUTES

 A file's attributes vary from one OS to another but typically

consist of these:

1. Name. The symbolic file name is the only information kept

in human-readable form. It is the most important attribute

used in all file operations

2. Identifier. This unique tag, usually a number, identifies

the file within the file system; it is the non-human-readable

name for the file.

3. Type. This information is needed for systems that support

different types of files.

4. Location. This information is a pointer to a device and to

the location of the file on that device.

5. Size. The current size of the file (in bytes, words, or

blocks) and possibly the maximum allowed size are

included in this attribute.

6. Protection. Access-control information determines who

can do reading, writing, executing, and so on.

D e p t o f C S E , M B I T S Page 3

7. Time, date, and user identification. This information

may be kept for creation, last modification, and last use.

These data can be useful for protection, security, and usage

monitoring.

FILE OPERATIONS

 A file is an Abstract Data Type (ADT) with six basic file

operations.

1. Creating a file. Two steps

 Space in the file system must be found for the file.

 An entry for the new file must be made in the directory.

2. Writing a file.

 Make a system call specifying both the name of the file

and the information to be written to the file.

 Given the name of the file, the system searches the

directory to find the file's location.

 The system must keep a write pointer to the location in

the file where the next write is to take place.

 The write pointer must be updated whenever a write

occurs.

3. Reading a file.

 Use a system call that specifies the name of the file and

where (in memory) the next block of the file should be

put.

 The directory is searched for the associated entry, and

the system needs to keep a read pointer to the location in

the file where the next read is to take place.

D e p t o f C S E , M B I T S Page 4

 Once the read has taken place, the read pointer is

updated. Because a process is usually either reading

from or writing to a file, the current operation location

can be kept as current file position pointer.

 Both the read and write operations use this same pointer.

4. Repositioning within a file.

 The directory is searched for the appropriate entry, and

the current-file-position pointer is repositioned to a given

value.

 Repositioning within a file need not involve any actual

I/0.

 This file operation is also known as file seek.

5. Deleting a file.

 Search the directory for the named file.

 Having found the associated directory entry, we release

all file space, so that it can be reused by other files, and

erase the directory entry.

6. Truncating a file.

 The user may want to erase the contents of a file but

keep its attributes.

 Rather than forcing the user to delete the file and then

recreate it, this function allows all attributes to remain

unchanged – except for file length-but lets the file be

reset to length zero and its file space released.

 These six basic operations comprise the minimal set of

required file operations.

D e p t o f C S E , M B I T S Page 5

 Other common operations include appending new

information to the end of an existing file and renaming an

existing file.

 These primitive operations can then be combined to

perform other file operations.

 For eg, we can create a copy of a file, or copy the file to

another I/O device, such as a printer or a display, by

creating a new file and then reading from the old and

writing to the new.

 We also want to have operations that allow a user to get

and set the various attributes of a file.

 Most of the file operations involve searching the directory

for the entry associated with the named file. To avoid this

constant searching, many systems require that an open()

system call be made before a file is first used actively.

 OS keeps a small table, called the open file table

containing information about all open files.

 When a file operation is requested, the file is specified via

an index into this table, so no searching is required.

 When the file is no longer being actively used, it is closed

by the process, and OS removes its entry from the open-

file table.

 The open() operation takes a file name and searches the

directory, copying the directory entry into the open-file

table.

D e p t o f C S E , M B I T S Page 6

 The open() call can also accept access mode information-

create, read-only, read-write, append-only, and so on.

This mode is checked against the file's permissions. If the

request mode is allowed, the file is opened for the process.

 The open() system call typically returns a pointer to the

entry in the open-file table. This pointer, not the actual

file name, is used in all I/0 operations, avoiding any further

searching

 In a multiprocessing system, more than one process may

be accessing the same file.

 Typically, the open-file table also has an open count

associated with each file to indicate how many processes

have the file open. Each close() decreases this open count,

and when the open count reaches zero, the file is no longer

in use, and the file's entry is removed from the open-file

table.

 The following information are associated with an open file.

1. File pointer. The system must track the last read-write

location as a current-file-position pointer. This pointer is

unique to each process operating on the file

2. File-open count. Multiple processes may have opened a

file; the system must wait for the last file to close before

removing the open-file table entry. The file-open counter

tracks the number of opens and closes and reaches zero on

the last close.

D e p t o f C S E , M B I T S Page 7

3. Disk location of the file. Most file operations require the

system to modify data within the file. The information

needed to locate the file on disk is kept in memory so that

the system does not have to read it from disk for each

operation.

4. Access rights. Each process opens a file in an access

mode. This information is stored on the process table so

the OS can allow or deny subsequent I/0 requests.

 Some OS provide facilities for locking an open file

 File locks allow one process to lock a file and prevent

other processes from gaining access to it.

 A shared lock is similar to a reader lock in that several

processes can acquire the lock concurrently.

 An exclusive lock behaves like a writer lock; only one

process at a time can acquire such a lock.

FILE TYPES

 Different types of files may be there.

 We always consider whether the OS should recognize and

support file types. If OS recognizes the type of a file, it

can then operate on the file in reasonable ways.

 A common technique for implementing file types is to

include the type as part of the file name. The name is

split into two parts- a name and an extension, usually

separated by a period character (“dot”).

D e p t o f C S E , M B I T S Page 8

 Examples: resume.doc, Server.java, and ReaderThread.c.

 The system uses the extension to indicate the type of the

file and the type of operations that can be done on that

file.

 Only a file with a .com, .exe, or .bat extension can be

executed, for instance. The .com and .exe files are two

forms of binary executable files, whereas a .bat file is a

batch file containing, in ASCII format, commands to OS

 For example, assemblers expect source files to have an

.asm extension, and the Microsoft Word processor expects

its files to end with a .doc extension.

 These extensions are not mandatory, so a user may

specify a file without the extension (to save typing), and

the application will look for a file with the given name and

the extension it expects.

D e p t o f C S E , M B I T S Page 9

 The UNIX system uses a magic number stored at the

beginning of some files to indicate roughly the type of the

file like executable program, batch file, Script file, and so

on.

 Not all files have magic numbers, so system features

cannot be based solely on this information

 Extensions are meant mostly to aid users in determining

what type of contents the file contains. Extensions can be

used or ignored by a given application

D e p t o f C S E , M B I T S Page 10

FILE STRUCTURE

 Each type of file has different structure. File types can be

used to indicate the internal structure of the file.

 Eg: source and object files have structures that match the

expectations of the programs that read them.

 Eg: OS requires that an executable file have a specific

structure so that it can determine where in memory to load

the file and what the location of the first instruction is.

 OS must support multiple file structures. Eg: If OS

defines five different file structures, it needs to contain the

code to support these file structures.

 In addition, it may be necessary to define every file as one

of the file types supported by OS. When new applications

require information structured in ways not supported by

OS, severe problems may result.

 Some OS impose (and support) a minimal number of file

structures. This approach has been adopted in UNIX and

MS-DOS

 This scheme provides maximum flexibility but little

support.

 All OS must support at least one structure- that of an

executable file- so that the system is able to load and run

programs.

 Locating an offset within a file can be complicated for OS

D e p t o f C S E , M B I T S Page 11

 Because disk operations are performed in units of one

block (physical record), and all blocks are the same size. It

will not match with the exact logical block size (file units).

 Packing a number of logical records into physical blocks

is a common solution to this problem.

 For example, the UNIX defines all files to be simply

streams of bytes. Each byte is individually addressable by

its offset from the beginning (or end) of the file. In this

case, the logical record size is 1 byte. The file system

automatically packs and unpacks bytes into physical disk

blocks say, 512 bytes per block-as necessary.

 Because disk space is always allocated in blocks, some

portion of the last block of each file is generally wasted. If

each block were 512 bytes, for example, then a file of

1,949 bytes would be allocated four blocks (2,048 bytes);

the last 99 bytes would be wasted.

 This is a case of internal fragmentation. Larger the block

size, the greater the internal fragmentation.

FILE ACCESS METHODS

 The information in the file can be accessed in several

ways. Some systems provide only one access method for

files. Other systems support many access methods, and

choosing the right one for a particular application is a

major design problem.

D e p t o f C S E , M B I T S Page 12

1. Sequential Access

 The simplest access method is Sequential Access.

 Information in the file is processed in order, one record

after the other.

 For example, editors and compilers usually access files

in this fashion.

 A read operation - read next- reads the next portion of the

file and automatically advances a file pointer. Similarly,

the write operation-write next-appends to the end of the

file and advances to the end of the newly written material

 Such a file can be reset to the beginning; and on some

systems, a program may be able to skip forward or

backward n records

2. Direct Access (Relative Access)

 A file is made up of fixed length logical records that

allow programs to read and write records rapidly in no

particular order.

 The file is viewed as a numbered sequence of blocks or

records.

D e p t o f C S E , M B I T S Page 13

 We may read block 14, then read block 53, and then write

block 7. There are no restrictions on the order of reading or

writing for a direct-access file.

 Databases are often of this type. When a query

concerning a particular subject arrives, we compute which

block contains the answer and then read that block directly

to provide the desired information.

 For the direct-access method, the file operations must be

modified to include the block number as a parameter.

Thus, we have read n, where n is the block number, rather

than read next, and write n rather than write next.

 The block number provided by the user to the OS is

normally a relative block number

 A relative block number is an index relative to the

beginning of the file. Thus, the first relative block of the

file is 0, the next is 1, and so on, even though the absolute

disk address may be 14703 for the first block and 3192 for

the second.

 We can easily simulate sequential access on a direct-access

file by simply keeping a variable cp that defines our

current position and adding a constant value ‘position’ with

cp

cp = cp + position

D e p t o f C S E , M B I T S Page 14

3. Other Access Methods

 Other access methods can be built on top of a direct-

access method.

 These methods generally involve the construction of an

index for the file.

 The index contains pointers to the various blocks. To find

a record in the file, we first search the index and then

use the pointer to access the file directly and to find the

desired record.

 With large files, the index file itself may become too large

to be kept in memory. One solution is to create an index

for the index file.

 The primary index file would contain pointers to secondary

index files, which would point to the actual data items.

 Index searching can be implemented using binary

search.

D e p t o f C S E , M B I T S Page 15

FILE SYSTEM PROTECTION

 When information is stored, we want to keep it safe from

physical damage (the issue of reliability) and improper

access (the issue of protection).

 File systems can be damaged by hardware problems,

power surges or failures, head crashes, dirt, temperature

extremes etc. Files may be deleted accidentally. Bugs in

the file-system software can also cause file contents to be

lost.

 Reliability is generally provided by duplicate copies of

files.

 Many computers have systems programs that automatically

copy disk files to tape at regular intervals to maintain a

copy when a file system is accidentally destroyed.

 Protection can be provided in many ways. For a small

single-user system, we might provide protection by

physically removing the floppy disks and locking them in a

desk drawer or file cabinet.

 In a multiuser system, however, other mechanisms are

needed.

Types of Access

 Protection mechanisms provide controlled access by

limiting the types of file access that can be made.

 The following types of operations may be controlled:

 Read. Read from the file.

D e p t o f C S E , M B I T S Page 16

 Write. Write or rewrite the file.

 Execute. Load the file into memory and execute it.

 Append. Write new information at the end of the file.

 Delete. Delete the file and free its space for possible

reuse.

 List. List the name and attributes of the file.

 Other operations, such as renaming, copying, and editing

the file, may also be controlled.

Access Control

 Different users may need different types of access to a file

or directory.

 The most general scheme to implement access control is to

associate with each file and directory an Access Control

List (ACL).

 ACL specifies user names and the types of access allowed

for each user.

 When a user requests access to a particular file, OS checks

the access list associated with that file. If that user is listed

for the requested access, the access is allowed. Otherwise,

a protection violation occurs, and the user job is denied

access to the file.

 The main problem with access lists is their length. If we

want to allow everyone to read a file, we must list all users

with read access.

D e p t o f C S E , M B I T S Page 17

 To condense the length of the access-control list, many

systems recognize three classifications of users in

connection with each file:

1. Owner. The user who created the file is the owner.

2. Group. A set of users who are sharing the file and need

similar access is a group, or work group.

3. Universe. All other users in the system constitute the

universe.

 For each of the above classes, 3 access permissions are

defined.

1. Read (r)

2. Write (w)

3. Execute (x)

Eg1: r w x r w x r w x : All 3 permissions for all the

categories

Eg2: r w x r – x – – x : Owner has all the permissions,

Group can read and execute but cannot write, others can

only execute

Other Protection Approaches

 Another approach to the protection problem is to associate

a password with each file.

 Just as access to the computer system is often controlled by

a password, access to each file can be controlled in the

same way.

 If the passwords are chosen randomly and changed often,

this scheme may be effective in limiting access to a file.

D e p t o f C S E , M B I T S Page 18

 The use of passwords has a few disadvantages:

 The number of passwords that a user needs to

remember may become large, making the scheme

impractical.

 If only one password is used for all the files, then

once it is discovered, all files are accessible

 Most common scheme is to allow a user to associate a

password with a subdirectory, rather than with an

individual file, to deal with this problem.

